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Abstract: Optically pure (+)-elsaminose (2), the amino sugar contained in the antitumour antibiotic
elsamicin A, has been synthesized in eight steps (26% overall yield) from known building blocks
derived from glycine, L-valine, and L-threonine. Direct and selective construction of the key
intermediate 6, with the complete backbone and the proper stereochemical configuration, is
accomplished by a syn-aldol type reaction between lithiated Schéllkopf’s bislactime ether S and a 1,3-
dioxolane-4-carboxaldehyde (-)-3. Copyright © 1996 Elsevier Science Ltd

Elsamicin A (1) is an antitumour antibiotic structurally related to chartreusin!, It contains chartarin as
aglycone and possesses two sugars, 6-deoxy-3-C-methyl-D-galactose and 2-amino-2,6-dideoxy-3-O-methyl-D-
galactose (2). The presence of the amino sugar (elsaminose) makes elsamicin A remarkably water soluble and
more bioactive than chartreusin.? In addition, elsaminose seems to play a critical role in the regulation of the
biological activity of elsamicine A.3
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Asymmetric syntheses of several amino sugars with the 2-amino-2,6-dideoxy-D-galactose backbone have
been described in the literature,4 but, to the best of our knowledge, only a multistep, carbohydrate based
synthesis of elsaminose has been reported.” In this communication we introduce the first convergent approach
to elsaminose, based on the use of natural amino acids as chiral auxiliaries and building blocks. Thus, the amino
acids glycine and L-threonine were sought as starting materials which would enable a disconnection at C2-C3
bond of elsaminose (scheme 1).6 In this way, a direct and stereocontrolled formation of the target carbon
skeleton could involve in the key step a syn aldol reaction 7 between a chiral glycine equivalent and a C4-
building block with the required absolute configuration at positions 4 and 5. Among various chiral glycine
equivalents,8 we found Schollkopf’s bislactim ethers ? to be very attractive, due to the high syn selectivity
shown by these reagents in aldol-type reactions.10 On the other hand, the additions of nucleophiles to 1,3-

dioxolane-4-carboxaldehyde systems, like 3, generally occur with aari selectivity, which has been explained
assuming a Felkin-Anh model. 11
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As substrate (-)-3 and reagent (+)-4 would form a matched-pair, we expected the reaction of the more
accessible but usually less selective lithium anion 10 to proceed with enough diasteroselection for our synthetic
purpose.

To this end, L-threonine was converted into the (4S)-trans-2,2,5-trimethyl-1,3-dioxolane-4-
carboxaldehyde ((-)-3) according to the literature,12 while (35)-2,5-diethoxy-3-isopropyl-3,6-dihydropyrazine
((+)-4) was prepared from glycine and L-valine, by a slight modification of a recently reported procedure.!3
Slow addition of freshly distilled (-)-3 14 over a solution of 1.2 equivalents of lithium salt 5 at -78°C led (after
quenching, aqueous work-up and removal of excess of (+)-4 15 and side products by flash chromatography) to
a mixture of aldol adducts 6+7+8, in a combined yield of 69% (see scheme 2).16 Integration of the pairs of
doublets corresponding to the isopropyl groups in the lH NMR spectrum of this mixture revealed a high
asymmetric induction in the formation of both new chiral centers (the ratio 6 : 7 : 8 being ca. 50 : 3.3 : <1).
Thus, the diastereomeric excess (de) of the adduct 6 over its epimers 7 and 8 was greater than 85%. However,
the stereoselectivity of this reaction was found to be markedly dependent on the reaction temperature. When the
addition was carried out at 0 °C a mixture of aldol products was also obtained with similar yield. Nevertheless,
at this temperature, the adduct 6 was only obtained with a de of 50% over the adduct 8, the secondary isomer
in this case. Separation of the components of the mixtures could be achieved by medium pressure
chromatography to provide products of high purity (de > 98%) on a multigram scale.1?
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Once we had the desired adduct in our hands, it was necessary to form the methyl ether on the free
hydroxy group and a partial reduction of the carboxylate group to complete the synthesis (schemes 3 and 4).
Methylation was accomplished in high yield by treatment of 6 with sodium hydride and methyl iodide (THF,
0°C to rt).18 Selective hydrolysis of the pyrazino moiety of 9 in the presence of the isopropylidene ketal
yielded, after removal of the auxiliary valine ester by simple chromatography, the amino ester 10 in good
yield.1? Protection of the amino group of 10 as benzyloxycarbonyl was accomplished in almost quantitative
yield under standard conditions. Hydrolysis of the isopropylidene ketal of 11 in acidic media (THF/TFA/H0
6:6:1, rt), led to the simultaneous formation of the desired *-lactone 12a in high yields. In an analogous
fashion, but using benzyl ether as protecting group for the hydroxy group, the adducts 7 and 8 were
transformed into the cyclic derivatives 13 and 14 with similar yields. Treatment of lactone 12a with
dimethylisopropylsilyl chloride (imidazole, THF, 1t) afforded the corresponding silyl ether 12b in excellent
yield.
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i NaH, Mel, THF, 0°C-rt, 12h, 95%. ii: HCI 0.25 M, EtOH, rt, 6h, 80%. iii: Na,COs3,
NaHCOj3, BnOCOCI, dioxane:Ho0 1:1, 1t, 2h, 99%. iv: TFA:THF:H-0 6:6:1, nt, 3h,
87%. v: 1.25 eq i-PrMe,SiCl, 2eq imidazole, THF, t, th, 99%.
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With difference to 12a, lactones 12b, 13 and 14 showed in the 1H NMR spectra a pattern of signals
suitable for the study of their conformation and relative stereochemistry by NOE difference spectroscopy.20
After corroborating the lH NMR assignments by COSY experiments, the analysis of the sets of observed NOEs
confirmed the formation of ¥lactones. In addition, the stereochemistry of lactone 12b derived from the major
aldo} adduct 6, was determined as 3.4-trans-4,5-trans, while lactones 13 and 14 showed an 3,4-cis-4,5-cis and
3.4-cis-4,5-trans configuration, respectively. These results were supported by force field and semiempirical
calculations (see figure 2).21

Fig. 2. Chem3D 25 drawings of the PM3-optimized minimum energy conformations (MMX force
field) found for models of y-lactones 12b, 13 and 14, showing characteristic NOEs 21

Although partial reduction of 12a followed by hydrogenation of the galactofuranoses 15a gave rise to
elsaminose with acceptable efficiency (16% yield for the seven steps), better yields were obtained starting from
the fully protected lactone (scheme 4). Thus, treatment of 12b with DIBAL-H at low temperature led to a
mixture 2:1 of lactols 15b within a combined yield of 85%. Finally, deprotection of 15b by catalytic
hydrogenation in acidic media (THF:HC1 0.25N 2:1) allowed, after ion-exchange chromatography, the isolation
of the free amino sugar in excellent yield. Treatment of 2 with HCI and purification by reverse phase flash
chromatography afforded elsaminose as its hydrochloride salt (16) in almost quantitative yield.26
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i. 25 eq DIBAL-H, 12a, -78°C, toluene:THF 2:1, 6h, 43%. ii. 2.1 eq DIBAL-H, 12b, -78°C,
toluene:THF 2:1, 6h, 85%. iii. Pd/C 10%, 15a, MeOH, Patm, nt, 6h, 86%. iv. (@) Pd/C 10%, 15b,
Patm, MeOH:HCI 0.25N 2:1, rt, 6h. (b) Dowex 50x8-200, 1% aq. NHg3. (¢) HCI 0.25 M (pH = 2), 86%.

The present asymmetric synthesis of 2 in eight steps with 26% overall yield from easily accessible
building blocks is much more efficient than the previous one,S and has the potential for modification to produce
2-amino-2-deoxy sugars derived from galactose and altrose in either D and L series. Attempts to extend this
new methodology for the synthesis of other natural amino sugars and of bioactive 1-deoxyazasugars are
currently in progress.
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Evidence supporting the stereochemical assignments was obtained by NMR analysis (\H. 13C, COSY and !'H NOE difference
spectroscopy) of cyclic derivatives (compounds 12b, 13 and 14). Absolute configurations follow from the use of (-)-3. as
there is precedem.12

Attempts to obtain 9 by quenching the aldol reaction with methyl iodide were unsuccessful. After 24 h at rt and aqueous
work-up, only traces of methylated adduct were isolated, along with the adduct 6.

Prolonged reaction times or the use of ethers as solvent resulted in a complete hydrolysis to the corresponding 2-amino-4,5-
dihydroxy acid, isolated in low yields. Lactonization of this compound was not efficiently achieved.
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molecular orbital calculations, vsing the MNDO, AM1 and PM3 Hamiltonians 23 included in MOPAC 93.24 The refined
geometries in the gas phase were in agreement with the conformations in solution deduced from 'H NOE spectroscopy. All
models of y-lactones showed lower heats of formation than the corresponding 8-isomers (the differences in AHO(PM3) being
higher than 3 Kcal/mol). For lactones 12b and 14, rotamers (within 0.7 and 1.1 Kcal/mol of the global minimum,
according to PM3 method) can better account for the observed NOEs between methyl groups and protons on C4, showed
with dashed arrows in figure 2 and characteristic for the y-lactones.
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Spectral data for hydrochloride sat of elsaminose (16): [@)®?p + 92.1 (¢ 0.6, H20) (]iLs [a]p + 85.3 (¢ 1.1. H20). a-
anomer: 'H NMR (500 MHz. D20) § 1.01 (d, 3H, J = 6.6 Hz, CH3CH), 3.21 (dd, 1H. J = 11.0, 3.8 Hz, H-2), 3.22 (s, 3H,
OCH3). 3.54 (dd. 1H. J = 11.0, 3.0 Hz, H-3). 3.91 (d, 1H, J = 3.0 Hz, H-4),4.00 (q. 1H,J = 6.6 Hz, H-5), 5.17 (d, IH, J =
3.8 Hz, H-1); 13C NMR (125 MHz, D>0) § 16.6 (C-6), 50.9 (C-2), 56.8 (OCH3), 67.0 (C-4). 67.4 (C-3), 76.5 (C-3). 90.2
(C-1). p-anomer: 1H NMR (500 MHz, D70) & 1.06 (d. 3H, J = 6.4 Hz, CH3CH). 2.90 (dd, 1H, J = 11.0. 8.6 Hz, H-2). 3.22
(s. 3H, OCH3), 3.35 (dd. 1H.J = 11.0, 3.0 Hz, H-3). 3.60 (q. 1H, J = 6.4 Hz, H-5), 3.87 (d. 1H, J = 3.0 Hz, H-4), 4.63 (d.
1H, J = 8.6 Hz, H-1); 13C NMR (125 MHz, D20) § 16.7 (C-6). 54.1 (C-2). 57.1 (OCH3), 66.4 (C-4), 72.3 (C-5). 79.4
(C-3).94.0(C-1).
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